
Introducing SlapOS Architecture
by SlapOS Team.

Details

This tutorial explains the simple concepts which underlie SlapOS architecture. SlapOS is a distributed, open source, Cloud
system. With SlapOS, anyone can become a Cloud provider, selling Software as a Service (SaaS), Platform as a Service
(PaaS) or Infrastructure as a Service (PaaS). With SlapOS it does not matter if one uses their own private hardware
infrastructure or public, shared infrastructure. SlapOS can accommodate the diversity of Cloud resources and gather the
Cloud resourses as if they were yours. SlapOS also helps optimizing resource usage between different Cloud providers.

Agenda
Masters and Compute Nodes
Computer Partitions
Networking

Details

This tutorial has 3 parts. In the first part we explain the concept of master and compute nodes in SlapOS. In the second part
we explain the concept of computer partition in SlapOS. In the third part we explain how SlapOS approaches networking.

Master and Compute Nodes
Details

SlapOS is based on a Master and Compute design. Here, we are going to provide an overview of SlapOS architecture. We
will be explaining the role of the Master and Compute nodes in particular, as well as the software components on which they
rely on to operate a Distributed Cloud.

Overview
Details

Compute nodes request to the Master node which software they should install, which software they should run and report to
the Master node how much resources each running software has been using for a certain period of time. The Master node
keeps track of the available compute node capacity and available software. The Master node also acts as a Web portal and
Web service so that end users and software bots can request software instances which are instantiated and run on Compute
nodes.

Master nodes are stateful. Compute nodes are stateless. More precisely, all information required to rebuild a Compute node
is stored in the Master node. This may includes the URL of a backup service which keeps an online copy of data so that in
case of failure of a Compute node, a replacement Compute node can be rebuilt with the same data.

It is thus very important to make sure that the state data present in the Master node is well protected. This could be
implemented by hosting the Master node on a trusted IaaS infrastructure with redundant resource. Or - better - by hosting
multiple Master nodes on many Compute nodes located in different regions of the world, thanks to appropriate data
redundancy heuristic.

We are approaching here the first reflexive nature of SlapOS. A SlapOS Master is normally a running instance of SlapOS
Master software instantiated on a collection of Compute nodes, which, together, form a trusted hosting infrastructure. In
other terms, SlapOS is self-hosted.

Master Node
Details

Let us now review in more detail the role of the SlapOS Master node. SlapOS keeps track of the identity of all parties which
are involved in the process of requesting Cloud resources, accounting Cloud resources and billing Cloud resources. This
includes end users (Person) and their company (Organisation). It includes suppliers of Cloud resources as well as
consumers of Cloud resources. It also includes so-called computer partitions which may run a software robot to request
Cloud resources without human intervention. It also includes Compute nodes which need to request to SlapOS Master
which resources should be allocated. SlapOS generates X509 certificates for each type of identity: X509 certificates for
people like you and me who login, an X509 certificate for each server which contributes to the resources of SlapOS and an
X509 certificate for each running software instance which may need to request or notify SlapOS Master. A SlapOS Master
node with a single Compute node, a single user and 10 computer partitions will thus generate up to 12 X509 certificates: one
for the compute, one for the user and 10 for computer partitions.

mailto:jp@nexedi.com


Any user, software or Compute node with an X509 certificate may request resources to SlapOS Master node. SlapOS
Master node plays here the same role as the back office of a marketplace. Each allocation request is recorded in SlapOS
Master node as if it were a resource trading contract in which a resource consumer requests a given resource under certain
conditions. The resource can be a NoSQL storage, a virtual machine, an ERP, etc. The conditions can include price, region
(ex. China) or specific hardware (ex. 64G of Ram, ARM CPU...). Conditions are somehow called Service Level Agreements
(SLA) in other architectures but they are considered here rather as trading specifications than guarantees. It is even possible
to specify a given computer rather than to rely on the automatic marketplace logic of SlapOS Master.

By default, SlapOS Master acts as an automatic marketplace. Requests are processed by trying to find a Compute node
which meets all conditions which were specified. SlapOS thus needs to know which resources are available at a given time,
at which price and with which characteristics.

Lastly, SlapOS Master also needs to know which software can be installed on which Compute node and under which
conditions.

Compute Nodes
Details

SlapOS Compute nodes are pretty simple compared to the Master node.

Every Compute node needs to run software requested by the Master node. It is thus on the Compute nodes that software is
installed. To save disk space, Compute nodes only install the software which they really need.

Each Compute node is divided into a certain number of so-called computer partitions. One may view a computer partition as
a lightweight secure container, based on Unix users and directories rather than on virtualization. A typical barebone PC can
easily provide 100 computer partitions and can thus run 100 wordpress blogs or 100 e-commerce sites, each of them with
its own independent database. A larger server can contain 200 to 500 computer partitions.

SlapOS approach of computer partitions was designed to reduce costs drastically compared to approaches based on a disk
image and virtualization. But it does not prevent from running virtualization software inside a computer partition, which
makes SlapOS at the same time cost efficient and compatible with legacy software.

Master Software
Details

The reference implementation of SlapOS Master node is based on ERP5. SlapOS Master node is actually derived from
ERP5 implementation for a Central Bank. The underlying idea is that currency clearing and Cloud resource clearing are very
similar. They should thus be implemented with the same software. Since ERP5 was already implemented to run a Central
Bank in 8 countries, it was a natural choice. Moreover, ERP5 has demonstrated its scalability for large CRM applications (ex.
BipAndGo) and its trustability for accounting. Thanks to NEOPPOD, its distributed NoSQL database, ERP5 can provide the
kind of transactional nature and scalability which is required for a stateful marketplace.

Implementing SlapOS Master on top of ERP5 was a direct application of ERP5 Universal Business Model (UBM)
technology, a model which unifies all sciences of management and which has been acknowledged by numerous IEEE
publications as a major shift in enterprise application design. Each Computer is represented by an Item in UBM. Allocation
requests, resource deliveries and resource accounting are represented by a Movement in UBM. The movement resource
can be: software hosting, CPU usage, disk usage, network usage, RAM usage, login usage, etc. Software hosting
movements start whenever the running software starts in the computer partition and stop whenever the running software
stops. Resource usage movements start and stop for accounting during each period of time, independently of the software
running state. The software release which is run on the computer partition is also an Item in UBM, just like the subscription
contract identifier. The parties (client, supplier) are represented as Node in UBM. More surprisingly, each Network is
considered also as a Node in UBM, just as a storage cell is represented as a Node in logistics.

Compute Software
Details

SlapOS Compute software consists of a POSIX operating system, SlapGRID, Supervisord and Buildout.

SlapOS is designed to run on any operating system which supports GNU's Glibc and Supervisord. Such operating systems
include for example GNU/Linux, FreeBSD, MacOS/X, Solaris, AIX, etc. We hope in the future that Microsoft Windows will
also be supported as a host (Microsoft Windows is already supported as a guest) through Glibc implementation on Windows
and a port of Supervisord to Windows.

SlapOS relies on mature software: Buildout and Supervisord. Both software are controlled by SlapGRID, the only original
software of SlapOS. SlapGRID acts as a glue between SlapOS Master node (ERP5) and both Buildout and Supervisord.
SlapGRID requests to SlapOS Master node which software should be installed and executed. SlapGRID uses Buildout to



install software and Supervisord to start and stop software processes. SlapGRID also collects accounting data produced by
each running software and sends it back to SlapOS Master. Let us now study with more detail the roles of Supervisord and
Buildout.

Supervisord is a process control daemon. It can be used to programmatically start and stop processes with different users,
handle their output, their log files, their errors, etc. It is a kind of much improved init.d which can be remotely controlled.
Supervisord is lightweight and old enough to be really mature (i.e. no memory leaks).

Quoting the Buildout website, "Buildout is a Python-based build system for creating, assembling and deploying applications
from multiple parts, some of which may be non-Python-based. It lets you create a Buildout configuration and reproduce the
same software later." Buildout originated from the Zope/Plone community to automate deployment of customized instances
of their software. Lead by Jim Fulton, CTO of Zope Corporation, Buildout became a stable and mature product over the
years.

Buildout is used in SlapOS to define which software must be executed on a Compute node. It plays a key role in SlapOS
industrial successes. Without it, SlapOS could not exist. However, Buildout is also often misunderstood - sometimes
purposely - by observers who criticize its use in SlapOS. Many people still do not realize that there is no possible software
standard on the Cloud and that Buildout is the solution to this impossibility. Experts know for example that any large scale
production system which is operated on the Cloud (ex. a social network system) or privately (ex. a banking software) uses
patched software. Relational databases are patched to meet performance requirements of given applications as soon as
data grows. If a Cloud operating system does not provide the possibility to patch about any of its software components, it is
simply unusable for large scale production applications. SlapOS is usable because its definition of what is a software is
based on the possibility of patching any dependent software component.

Where is my patch?
Still people who name a software such as "KVM" or "MySQL" believe that this is enough (and for them, SlapOS provides
aliases for the words "KVM" and "MySQL" which link to an explicit Buildout definition). However, the reality is not that
straightforward. For example, some releases of KVM support NBD protocol over IPv6 but some not. Some releases of KVM
support Sheepdog distributed block storage but some not. Some releases of KVM support CEPH distributed block storage
but some not. Most users who run KVM to try a software do not care about IPv6, Sheepdog or CEPH. But those users who
run KVM on SlapOS need IPv6 support to access NBD, and this is for now only available as a patch. Those who want
resilient storage may want Sheepdog support which is only available from version 0.13. And those who want CEPH support
also need a patch. However, those users who want the IPv6 patch may prefer not to use the CEPH patch which is not yet
stable officially. And those who want CEPH patch may distrust the IPv6 patch. All in all, there is no way to agree on a single
version of KVM. All the different releases of KVM may have to be installed on SlapOS Compute nodes in order to meet
market requirements. Since the patch possibilities are so wide, the easiest way to know afterall which KVM is being installed
on a SlapOS node is simply to list where its original source code was obtained from and which patches were applied. This is
exactly what Buildout does, in just a few lines of configuration. Buildout also eliminates any complex or time consuming
process to distribute binary packages on a wide range of hardware architecture, thanks to a trusted, distributed, caching
mechanism which does not even centralize signature.

The problem we are discussing here about KVM is even more complex than MySQL. There are now multiple sources of
MySQL: the official one (MySQL), the one by MySQL original author Michael Widenius (MariaDB), the one by Percona
InnoDB experts and the one by Cubrid which is not MySQL but claims to be 90% compatible with it. Among each source of
MySQL sources, there are different versions. Default compilation options may also differ. Authors of large scalable
applications know very well that the performance of their applications can be dramatically impacted by subtle changes to the
SQL optimizer. Changing the version of source of MySQL may simply lead to a performance collapse. We always remember
an example of application for which we had to change the default parameters in MySQL header file in order to scan 32 rows
instead of 8 for query optimization. Therefore, if we did not have the possibility to choose which source of MySQL to use and
which patch to apply to it, we just could not have run entreprise applications with SlapOS and shown industrial success
stories.

Arguments and counter-arguments against Buildout
The use of Buildout by SlapOS is disruptive compared to traditional approaches of software distribution. It has enabled
industrial success faster. But it also has lead to slower adoption of SlapOS by certain communities, often for incorrect
rationale. We are going to discuss further.

What about disk images?

Some people consider that Buildout is irrelevant since Cloud should be based on disk images and virtual machines. What
those people do not realize is that not only SlapOS can run about any disk image format but that Buildout can be used to
automate the production of disk images, much better probably than many other tools. And it is open source.

What about distributions' packaging systems?

Some people consider that Buildout is irrelevant since it is possible to achieve the same with packaging systems of

http://buildout.org
http://zope.org
http://plone.org
http://wiki.zope.org/zope3/JimFulton


GNU/Linux distributions. What they do not realize is that not only Buildout can rely on existing GNU/Linux distribution
packages (at the expense of portability) but that Buildout can also be used to automate the production of packages for
multiple GNU/Linux distributions in little effort. Also, Buildout format is much more concise when it comes to patching or
adding dependencies to existing software thanks to the "extends" mechanism. Lastly, Buildout provides a kind of packaging
format which can reuse language based packaging formats (eggs, gems, CPAN, etc.) in a way which is neither specific to a
given GNU/Linux distribution nor to GNU/Linux itself. In a sense, Buildout integrates much better with native language
distribution systems than GNU/Linux packaging systems do. And native language distribution systems are currently
becoming the de facto standard for developers.

What about separation between software and instance?

Some people consider that Buildout prevents sharing the same executable among multiple instances of the same
application. This is a common misconception, which is also wrong. SlapOS is a typical example of how to deploy once a
single software made of shared libraries and executable binaries and create hundred instances of it without any binary code
duplication, without wasting resident RAM.

I need something that is language agnostic

Some people consider that Buildout is designed for python only. What they do not realize is that Buildout is already used to
build software based on C, C++, Java, Perl, Ruby, etc. And it would not be an issue to extend SlapOS and support any
Buildout equivalent. But we are not aware of any system builder such as Buildout which can support as many different
architectures and languages in such a flexible way.

Come on, I'm on Windows

Some people consider that Buildout is not for Windows or that it does not support proprietary software in binary form, without
source code. Again, this is a misconception. Buildout is just an automation tool. Whenever source code is not available,
Buildout can take a binary file as input. This is what is often done for example to build Java applications based on .war
distribution archives, or to deploy OpenOffice binaries which would else take 24 hours to compile. Buildout is also
compatible with Windows. Automating the installation or the replication of Windows based software with Buildout is possible.
Buildout would even be an excellent candidate to automate the conversion of Windows disk images from one host
environment to another. Generally speaking, running SlapOS natively on Windows could be very useful both for SlapOS
and... for Windows.

It destroys the work made by GNU/Linux distributions

Overall, what makes Buildout so debated by some observers is that it shows a different path for software distribution,
especially for open source software distribution. Instead of focusing - as GNU/Linux distributions do - on providing a
consistent set of about any possible open source application with perfectly resolved dependencies and maximized sharing of
libraries, it focuses on building a single application only and its dependencies in a way which maximizes the portability
between different GNU/Linux distributions and POSIX compliant operating systems. Application developers only need to
care about their own application and stabilize its distribution. Unlike what happens with most GNU/Linux distributions, they
do not need to care about possible consequences of changing one shared library on other applications hosted on the same
operating system. Buildout is after all an approach to software distribution in which the most complex software has about
100 dependencies to resolve, compared to 10,000+ interdependent packages in a traditional GNU/Linux distribution.
Buildout puts the burden of maintenance on each application packager and removes the burden of managing global
dependencies, thus allowing parallel and faster release cycles for every application. All this is with a very concise approach.

Not convinced yet?

If this discussion does not make you convinced yet that Buildout is an efficient solution to specify a software executable and
deploy it on the Cloud, please consider the following problem to solve: automate the packaging of ERP5 open source ERP
and all its dependencies (OpenOffice, patched Zope, patched MariaDB, etc.) on all major GNU/Linux distributions in such a
way that it is possible to provide the same behavior on every GNU/Linux distribution and to run 100 instances of ERP5 on
the same server, each of which can have its own MariadDB daemon and Zope daemon. Obviously, if you find a better
solution, please let us know.

SLAP API

http://www.slapos.org/forum


Details

SlapOS is based on the SLAP API. Both SlapOS Master reference implementation based on ERP5 and SlapGRID reference
implementation in python could be replaced. An implementation of the SLAP protocol was for example already made in Java
on the client side in a few days. Implementing SLAP for about every language should be just as easy.

The SLAP API is a polling protocol. Every SlapOS Compute Node contacts through HTTP SlapOS Master Node for 4
different purposes: to define capacity, to collect the list of software to install, to collect the list of computer partitions to
configure and to post accounting information.

At boot time, each Compute Node contacts SlapOS Master node to notify it that the boot process was completed and
provides a list of available computer partitions, in particular their identifier and IPv6 address. This is the set-capacity
request. This request is then launched again every 24 hours in order to take into account possible changes of network
configuration, which normally should not happen but which sometimes do.

Every minute, SlapOS Compute node requests the list of software which should be installed. As for most parts of SLAP API,
the values which are exchanged are promises to reach, not actions to take. SlapOS Master thus returns the complete list of
software which are expected to be installed by the Compute node, not taking into account whether such software was
installed or not. Reversely, if a software which was installed is no longer in the list, it implies that it should be removed. Just
remember, SlapOS Compute Nodes are supposed to be stateless, just as the SLAP API.

Every minute, SlapOS Compute node requests the list of computer partitions to configure. This is handled by a different
process. The underlying idea is that installing a software could take between a couple of minutes (if it was already compiled
and cached for the same architecture) to a couple of hours (if it needs to be compiled for the architecture). Configuring an
instance should take on the other hand less than a couple of seconds and ideally less than a second. Each time SlapOS
Compute node requests the list of computer partitions, this will eventually lead to the reconfiguration of all partitions. A large
server could contain 300 partitions. If the configuration of a single partition takes one second, it takes 5 minutes to
reconfigure all partitions. Obviously, SlapGRID tries to optimize partition configuration and will only reconfigure those
partitions which configuration has changed since the last run. But, in case an incident happens, such as an earthquake or
electricity shortage in a region, it is possible that all computer partitions of a given server need to be reconfigured at the
same time, even though this is not desirable. In order to make sure that such massive reconfiguration does not lead to
system collapse, we have taken the design decision to run configuration with a single process and a single thread, so that
most cores of the host server are still available for running what they are actually supposed to run, instead of running
configuration software.

Every day, accounting information is collected from every computer partition. It is the role of the software instance running in
the computer partition to produce a file which contains usage and incident reports in TioXML format. All files are aggregated
and posted to SlapOS Master which then uses them for further accounting and billing. One should take note that the
accounting information which is exchanged is very abstract and can cover both physical usage (ex. CPU, RAM, disk), virtual
usage (ex. number of users, number of transactions) and incidents (ex. failure to access data for 5 minutes). TioXML format
is easy to extend in order to cover about any possible billing requirement.



There are no web sockets in this protocol/API. The goal of SLAP API is not to instantly provide a Cloud resource. For instant
provisioning, we rather recommend a predictive pre-allocation approach. Rather than allocating on demand, one should pre-
allocate based on previsions or for safety and simple pass to the requester the pre-allocated resource. We even think that
slowing down the provisioning of resources is a good approach to reduce the risk of speculation on the availability of Cloud
resources and thus an efficient way to increase Cloud Resilience. Further research combining Computer Science and
Economy could eventually prove or infirm our assertion. Anyway, we think that more scalability could be reached through an
HTTP-based push API. It remains to be seen how well such a API can resist to frequent network interruptions over
intercontinental Internet transit routes.

Computer Partitions
Details

The concept of Computer Partition is fundamental to understand the structure of a SlapOS Compute Node. A Computer
Partition can be seen as a lightweight container or jail. It provides a reasonable level of isolation, based on the host
operating system user and group management. It does not provide however the same level of isolation as the one which
exists between virtual machines, unless of course computer partitions are used to run virtualization software, something
SlapOS can do. We came with the idea of computer partition after trying other approaches. Around 2004, we started using
chrooted filesystems and linux-vserver jails. We also tried to run virtual machines on the same server hardware. We found
that both linux-vserver jails and virtual machines required maintaining one complete filesystem per instance of application.
This generated much additional effort compared to having to maintain only one filesystem. Also it was impossible to run
hundreds of filesystems or virtual machines on the same host because of the huge overhead of each filesystem and virtual
machine. This meant that reaching low cost hosting for standard open source applications was close to impossible with this
approach. We then discovered Buildout and found that it was possible to split Buildout into two independent profiles: one
profile to build the software in a self contained way and one profile to configuration files in a directory with links to a shared
software directory. The concept of Computer Partition was created. Thanks to this concept, it is now possible to reach a
hosting cost of less than 1 EUR / month per hosted application. Competition with Cloud monopolies becomes possible for all
independent software vendors.

Let us now review the details of a Computer Partition.

Computer Partition N
dedicated global IPv6
dedicated local IPv4
dedicated slaptapN
dedicated slapuserN
/srv/slapgrid/slappartN
optional /dev/sdaX and IPv4

Details

Every computer partition consists of a dedicated IPv6 address, a dedicated local IPv4 address, a dedicated tap interface
(slaptapN), a dedicated user (slapuserN) and a dedicated directory (/srv/slapgrid/slappartN). Optionally, a dedicated block
device and routable IPv4 address can be defined.

SlapOS is usually configured to use IPv6 addresses. Although use of IPv6 is not a requirement (an IPv4 only SlapOS
deployment is possible) it is a strong recommendation. IPv6 simplifies greatly the deployment of SlapOS either for public
Cloud applications or for private Cloud applications. In the case of public Clouds, use of IPv6 helps interconnecting SlapOS
Compute Nodes hosted at home without having to setup tunnels or complex port redirections. In the case of private Cloud,
IPv6 replaces existing corporate tunnels with a more resilient protocol which provides also a wider and flat corporate
addressing space. IPv6 addressing helps allocating hundreds of IPv6 addresses on a single server. Each running process
can thus be attached to a different IPv6 address, without having to change its default port settings. Accounting network
traffic per computer partition is simplified. All this would of course be possible with IPv4 or through VPNs but it would be
much more difficult or less resilient. The exhaustion of IPv4 addresses prevents the allocation of so many public IPv4
addresses to a single computer. After one year of experimentation with IPv6 in France, using Free IPv6 native Internet
access (more than 50% of worldwide IPv6 traffic), we found that IPv6 is simple to use and creates the condition for many
innovations which would else be impossible.

Even though IPv6 is used to interconnect processes globally on a SlapOS public or private Cloud, we found that most
existing software is incompatible with IPv6. Reasons vary. Sometimes, IP addresses are stored in a structure of 3 integers,
which is incompatible with IPv6. Sometimes, IPv6 URLs are not recognized since only dot is recognized as a separator in IP
addresses. For this reason, we provide to each computer partition a dedicated, local, non routable IPv4 address. Legacy
software listens on this IPv4 address. A kind of proxy mechanism is then used to create a bridge between IPv6 and IPv4. In
the case of HTTP applications, Apache usually plays this role, in addition to the role of applicative firewall (mod_security)
and strong security (TLS). In the case of other protocols, we usually use Stunnel for the same purpose. We will discuss this
approach in the next chapter and study in particular how Stunnel can turn a legacy application into an IPv6 compatible
application without changing any line of the original code.



For some applications, IP is not the appropriate ISO level. We provide to such applications a tap interface which emulates a
physical Ethernet interface. This interface is usually bridged with one of the servers' physical Ethernet interfaces. Tap is
often used by virtualization software such as KVM to provide access to the outer world network. This is for example how the
default KVM implementation of SlapOS is configured. But it could also be used for other applications such as virtual private
networks or virtual switches which require a direct access to Ethernet. In a Computer with 100 computer partitions, tap
interfaces are usually named slaptap0, slaptap1, etc. until slaptap99.

Every computer partition is linked to a user and a directory. In a Computer with 100 computer partitions, users are usually
named slapuser0, slapuser1, etc. until slapuser99. Directories are usually set to /srv/slapgrid/slappart0,
/srv/slapgrid/slappart1, etc. until /srv/slapgrid/slappart99. Directory /srv/slapgrid/slappart0 is owned by user slapuser0 and by
group slapuser0. Directory /srv/slapgrid/slappart1 is owned by user slapuser1 and by group slapuser1. Slapuser0 is able to
access files in /srv/slapgrid/slappart0. Slapuser1 is not able to access files in /srv/slapgrid/slappart0. Moreover tap interface
slaptap0 is owned by slapuser0, tap interface slaptap1 is owned by slapuser1, etc. Q: what about IPv6 individual addresses,
who own them?

For some applications, it could be necessary to attach to some partitions a raw block device. This could be useful to
maximize disk I/O performance under certain configurations of KVM, and to access directly a physical partition of an SSH
disk. This possibility has been included in the design of SlapOS, although it is not yet fully implemented.

To summarize security, a Computer Partition is configured to have no access to any information of another Computer
Partition. Access rights in SlapOS have thus 3 different levels: global access, computer partition only access and superuser
only access. SlapOS compute nodes are normally configured in such a way that global hardware status has global access
right. Installing a monitoring software is thus possible without further customization. Every software running in a computer
partition has access to all files of the computer partition, owned by the same user. Software running in a computer partition
has no possibility to access or modify files owned by the superuser. As a general design rule, we refuse to grant any
superuser privilege to applications or computer partitions. Only SlapGRID and Supervisord are executed with superuser
privilege.

Computer Partition N
Process(N, 0)
Process(N, 1)
...
Process(N, q)

Details

A single computer partition is intended to host a single elementary application such as a database, an application server or a
test runner. Yet, multiple UNIX processes maybe required for this purpose. If we consider the case of a Zope Web
application server, two processes at least are allocated. One process for Apache acts as secure applicative firewall
(mod_security + mod_ssl). Another process is the Zope application server itself. In the case of a database, one process is
the database itself and another process is Stunnel application which maps IPv6 ports to local IPv4 ports.

The number of processes is even higher for applications. Running ERP5 requires no less than 12 processes:
backend_apache, certificate_authority, conversion_server, crond, erp5_update, kumo_gateway, kumo_manager,
kumo_server, memcached, mysql_update, mysqld, zope_1. In this case, the computer partition acts as a one place fits all
containers for ERP5 and all its dependencies. A similar approach would be followed for any shrinked wrapped applications,
including Apache/PHP/MySQL applications. This is acceptable since the concept of "elementary" still relates to the idea that
only one instance of the application is launched and that, most of the time, is not used. Multiple computer partitions can thus
be allocated on a single computer. However, this approach does not consider the possibility to scale up.

SlapOS Networking
Details

It is a design choice of SlapOS to consider that the only commonality between nodes of a distributed Cloud is IP and that
there is no possibility to rely on network management services such as BGP to implement value added networking. SlapOS
networking is thus based on flat IP addressing model. There is no notion of virtual local area network (VLAN) at the core of
SlapOS. There is no notion of quality of service at the core of SlapOS. There is no encryption and no security at the core of
SlapOS. It is the role of applications to implement such concepts by allocating appropriate resources and encapsulating
them into insecure and unpredictable IP transit.

It would be an interesting research topic to discuss how to provide quality of service or virtual local area network
management service on top of insecure and somehow unpredictable IP transit. We hope that someone will contribute to this
research by implementing for example a complete Infrastructure as a Service (IaaS) stack on top of SlapOS with the idea to
deploy over a collection of computers spread all over the world. This topic is however out of scope of SlapOS core design.

IPv6



Details

The use of IPv6 is recommended in order to create a global, distributed, peer-to-peer, unencrypted network of
intercommunicating processes with a single, flat, addressing space. In an ideal SlapOS implementation, all software
instances allocated on computer partitions of Compute Nodes can communicate with each other through IPv6 connections.
Some users, represented on the drawing with a laptop, access SlapOS processes using IPv6 directly. This is the case of
developers who need to access processes directly without a front end. Most legacy users however access SlapOS
applications processes through IPv4 and application front-ends. Application front-ends are thus allocated both on IPv4 and
IPv6 on special computer partitions with a dual IPv4 and IPv6 addressing.

The use of IPv6 is sometimes questioned by observers. For end users, IPv4 front ends provide access to the IPv6 backend.
The use of IPv6 is thus transparent. On the other hand, any reasonable developer is able nowadays to setup an IPv6 tunnel
using Miredo for example or to setup an IPv6 tunnel through tunnel brokers such as Hurricane Electric. Until now, we have
been able to implement IPv6 access in about any condition: on mobile 3G connections, on home ADSL, in a university in
China, etc. In the worst case, we simply connect through IPv4 and HTTP to a remote virtual machine hosted on SlapOS and
accessible through a front-end. We then use that virtual machine instead of our local machine.

Yet, some large organisations refuse to implement IPv6. In this case, IPv6 can be replaced by IPv4 in SlapOS as long as a
VPN is deployed to provide a global, flat addressing space with enough available addresses. It should be possible to
allocate 100 IPv4 addresses on each SlapOS Compute Node. Distributed VPN technologies such as Tinc could eventually
be integrated at the core of SlapOS to implement a margeIPv4 flat addressing space without sacrificing the key concept of
distribution of resources which is at the core of SlapOS.


	Introducing SlapOS Architecture
	Agenda
	Master and Compute Nodes
	Overview
	Master Node
	Compute Nodes
	Master Software
	Compute Software
	Where is my patch?
	Arguments and counter-arguments against Buildout
	What about disk images?
	What about distributions' packaging systems?
	What about separation between software and instance?
	I need something that is language agnostic
	Come on, I'm on Windows
	It destroys the work made by GNU/Linux distributions
	Not convinced yet?


	SLAP API
	Computer Partitions
	Computer Partition N
	Computer Partition N
	SlapOS Networking
	IPv6

